Optimizing Ventilation Design Through Discrete Event Equipment Simulation

BY: KEITH G. WALLACE, JR. PRINCIPAL CONSULTANT SRK CONSULTING (U.S.), INC. FORMER PRESIDENT OF MINE VENTILATION SERVICES, INC.

AND

PIERRE LABRECQUE PRINCIPAL CONSULTANT SRK CONSULTING (CANADA), INC.

srk consulting

Determining ventilation demand

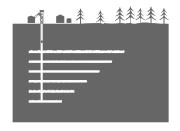
- For most metal mine ventilation systems, ventilation demand is governed by the diesel equipment in use at the mine.
- Airflow is typically based on a flow requirement per kW of diesel machine.
- To properly model the ventilation system, knowing the number and location of the diesel equipment is required.

Airflow Factor 0.08 (m³/s/kw)

	Type of Equipment	U/G Fleet Size	Diesel (kW)	Airflow Utilization (%)	Airflow (m³/s)
	Haul Trucks (40t)	14	300	85%	286
	LHDs	5	110	75%	33
	Drills	5	40	20%	
	Jumbos	8	45	20%	
	Explosive Loaders	6	95	20%	
	Shotcrete Sprayer	7	95	20%	77
	Grader	1	85	30%	
	Miscellaneous	15	80	20%	
	Light Vehicle	12	140	20%	
				Sub-Total	395
				Leakage 10%	40

Leakage 10% 40

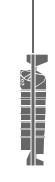
Total 435



Traditional determination of ventilation demand

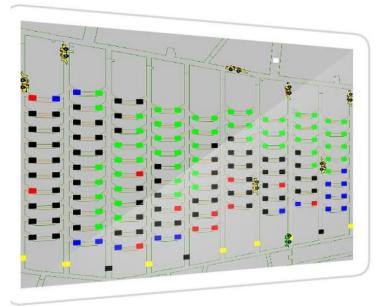
Equipment Fleet Determination

- Equipment fleets are often determined by:
 - Dividing the desired production rate by the diesel truck tonnage to determine the number of trucks required to meet goal (in a day).
 - Evaluate the haulage distance and the speed at which the trucks can operate up and down a ramp or to the crusher location.
 - Calculate the time for the trucks to make the haulage circuit and calculate how many trucks would be required to achieve the tonnage rate.
 - Perform calculation for various production time phases.


🗲 srk consulting

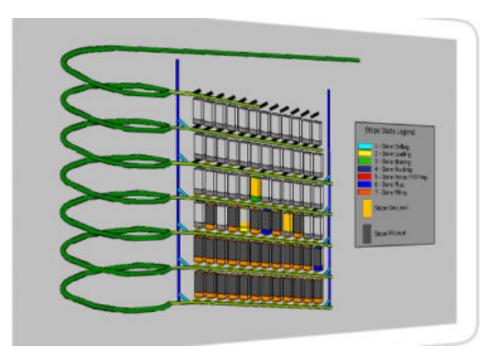
Equipment Fleet Determination

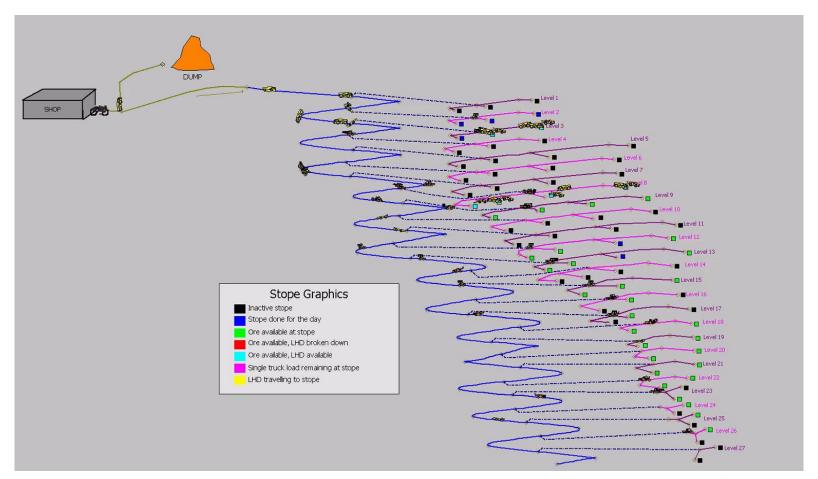
- The challenge is the calculation rarely identifies bottlenecks such as:
 - Interference for trucks hauling up ramp meeting trucks hauling down ramp
 - Congestion around crushers and hoisting shafts
 - Limitations in hoisting capabilities
 - Layout restrictions
 - Development restrictions
- This is where dynamic process simulation comes in.



srk consulting

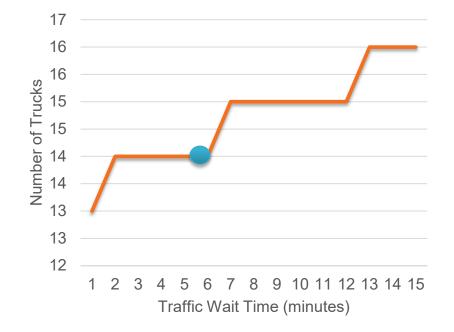
Dynamic Process Simulation


- Dynamic modelling takes a systems approach, with models accounting for interactions and interferences between all of the ore flow systems and mining equipment.
- Most projects involve studying ore and waste handling, lateral development rates, block cave or stope development, construction, production, crusher and skipping capacity, truck ramp haulage and traffic analysis, and bin and storage facility optimization.



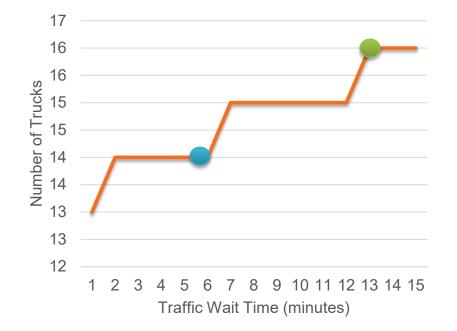
Dynamic Process Simulation

- This modeling feeds into mine ventilation designs as the equipment fleet is optimized
 - Both for location of mobile equipment to maximize production and minimizing interferences
 - Size of diesel haulage equipment.



Avg Cycle Times	Minutes
Driving	39.3
Loading	20.9
Wait Dump	0.0
Dumping	2.9
Wait Load	6.9
Level Traffic	1.0
Truck Cycle Time (No Ramp	
Traffic)	71.0
Ramp Traffic	??

- Cycle times rely on many assumed factors
- Traffic wait time can be difficult to predict.
- Dependent on actual design of the mine and interactions between equipment.

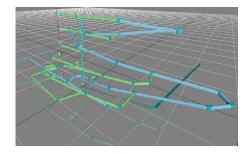


- Incorrectly assumed 6 Minutes of wait time.
 - 14 Trucks estimated

- Incorrectly assumed 6 Minutes of wait time.
 - 14 Trucks estimated
 - Dynamic simulation showed more trucks required increasing traffic near 13 minutes.

🔫 srk consulting

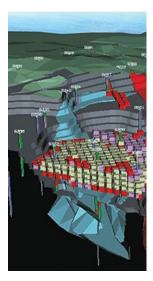
16 Trucks Required



- Incorrectly assumed 6 Minutes of wait time.
 - 14 Trucks estimated
- Dynamic simulation showed more trucks required increasing traffic near 13 minutes.

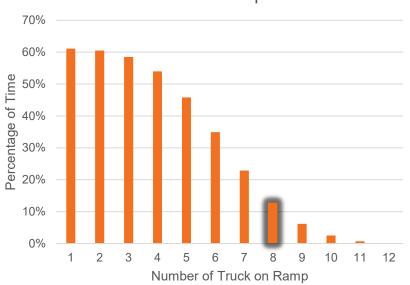
Mine Ventilation Simulation

- Once the equipment fleet is optimized, the ventilation engineer can more accurately assess:
 - Ventilation demand based on equipment location.
 - Infrastructure required to support ventilation demand (e.g. ventilation raises, airflow in ramps, etc.)
- The process may iterate based on infrastructure changes for ventilation purposes.



📌 srk consulting

Examples of Modeling Approach



Target Ramp Airflow Based on Trucks

Time On Ramp

Design airflow for 8 trucks in ramp (13% of time)

192 m³/s Minimum Ramp Airflow (8 Trucks × 300 kW × 0.08 m³/s/kW)

Overall Maximum Dynamic Airflow

Airflow factor	0.08	8 (m³/s/kw)				5		
Type of Equipment	U/G Fleet Size¹	Over Diesel (kW)	all Method Airflow Utilization (%)	Total Airflow (m³/s)	Unit airflow² (m³/s)	Dyna Number in Ramp	MIC Number on Levels	Total Airflow (m³/s)
Haul Trucks	13	300	85%	265	24	8	5	312
Number of LHDs	5	110	75%	33	9	-	5	44
Drills Jumbos Explosive Loaders Shotcrete Sprayer Grader Miscellaneous Light Vehicle	5 8 6 7 1 15 12	40 45 95 95 85 80 140	20% 20% 20% 20% 30% 20% 20%	77	15	-	5	77
ÿ			Sub-Total Leakage 10% Total	38			Sub-Total age 10% Total	43

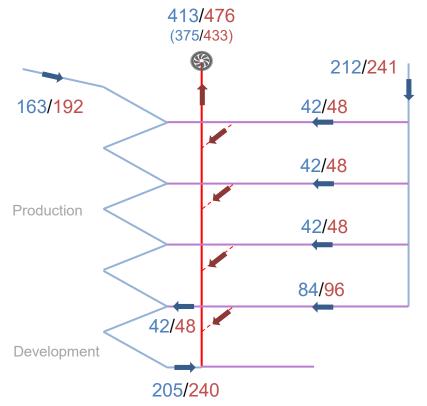
¹Fleet size of 14 (1 Truck on Surface)

Overall Maximum Dynamic Airflow

	Airflow factor	0.08	3 <i>(m³/s/kw)</i> Over a	all Method			Dyna	mic	
	Type of Equipment	U/G Fleet Size ¹	Diesel (kW)	Airflow Utilization (%)	Total Airflow (m³/s)	Unit airflow² (m³/s)	Number in Ramp	Number on	Total Airflow (m³/s)
	Haul Trucks	13	300	85%	265	24	8	5	312
	Number of LHDs	5	110	75%	33	9	-	5	44
	Drills	5	40	20%					
	Jumbos	8	45	20%					
	Explosive Loaders	6	95	20%					
	Shotcrete Sprayer	7	95	20%	77	15	-	5	77
	Grader	1	85	30%					
	Miscellaneous	15	80	20%					
	Light Vehicle	12	140	20%					
				Sub-Total	375			Sub-Total	433
				Leakage 10%	38		Leak	age 10%	43
				Total	413			Total	

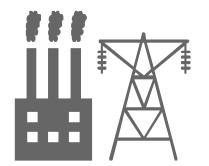
¹*Fleet size of 14 (1 Truck on Surface)*

Overall ListvsDynamic413 m³/s476 m³/s


- In this case the Dynamic Simulation is about 15% higher
- Dynamic Simulation provides a higher resolution for distribution of airflow
- Aids in sizing of raises and airway profiles for velocity especially in the ramps.

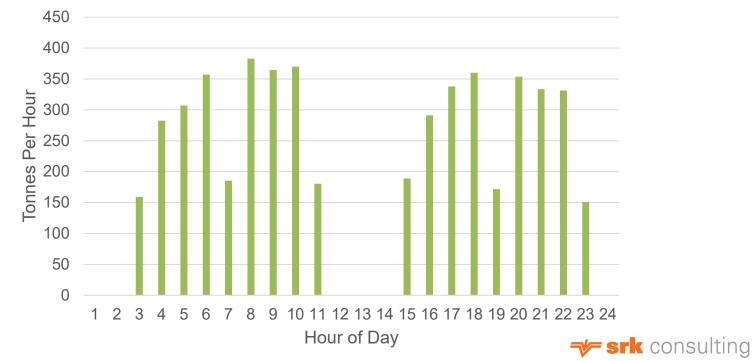
📌 srk consultina

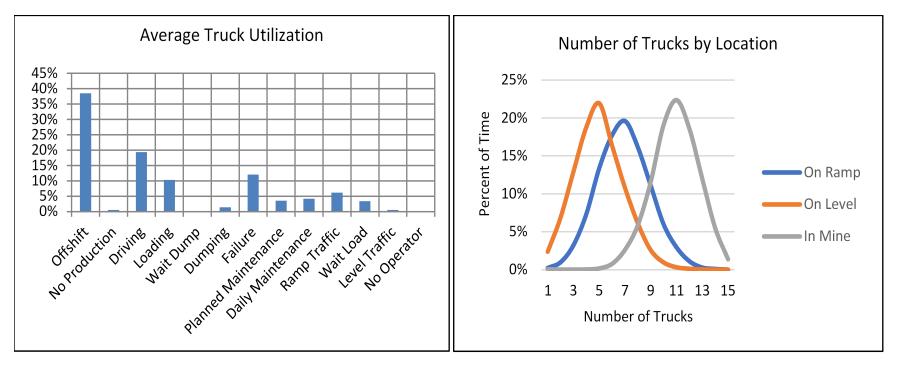
Overall Maximum Dynamic Airflow


	Overall Method (m³/s)	Dynamic (m³/s)
Airflow in Ramp	163	192
Airflow per Level	42	48
Levels	5	5
Total	375	433
Leakage	10%	10%
Total Mine Flow	413	476

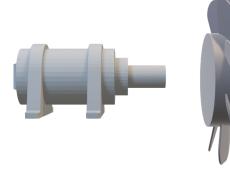
Dynamic Simulation and Ventilation on Demand

- Dynamic simulations can provide a reasonable estimate for amount on location of equipment throughout the mine.
- Used to better understand the power savings opportunities of VOD



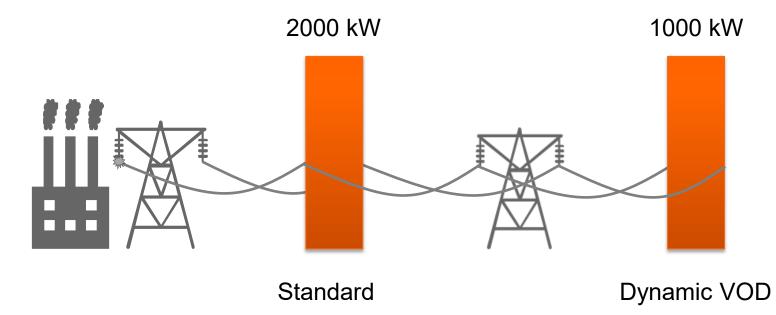

Dynamic Simulation and VOD (Example)

Average Daily Tonnes Per Hour

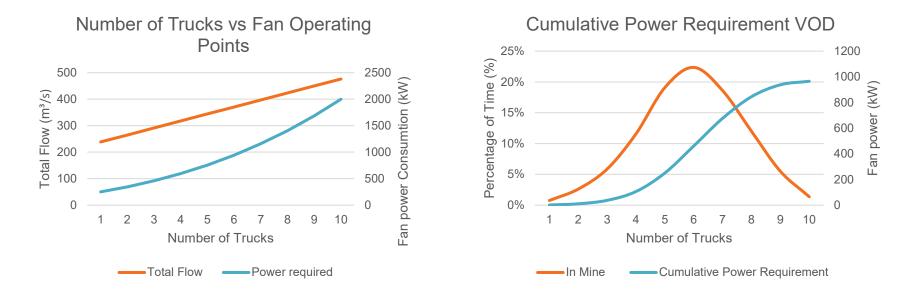


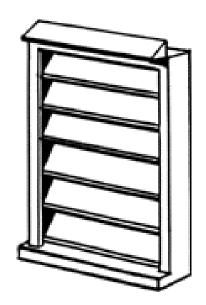
Dynamic Simulation and VOD (Example)

Dynamic Simulation and VOD (Example)



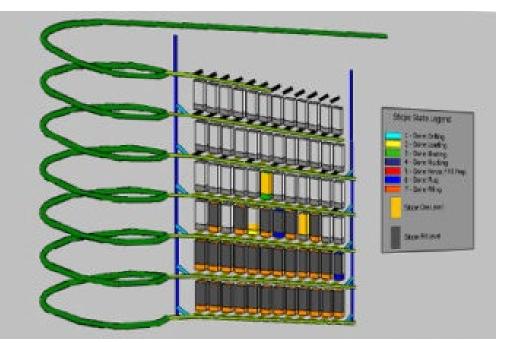
- Power Consumption \propto Fan Speed³
- Assume Main Power Consumption 2000kW at 476 m³/s
- Basic example of reducing airflow based on number of trucks in the mine.

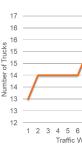

Dynamic Simulation and VOD (Example) Average Power Demand Onshift


srk consulting

Dynamic Simulation and VOD (Example) Average Power Demand Onshift

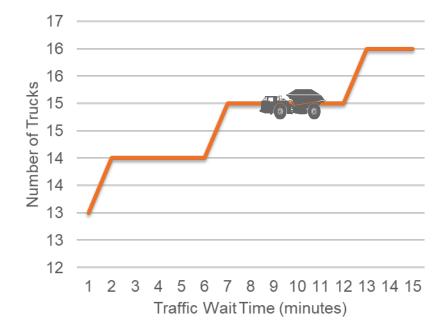
Dynamic Simulation and VOD Caveats

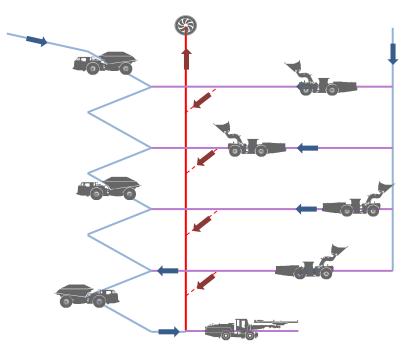

<u>This Photo</u> by Unknown Author is licensed under <u>CC BY-SA</u>

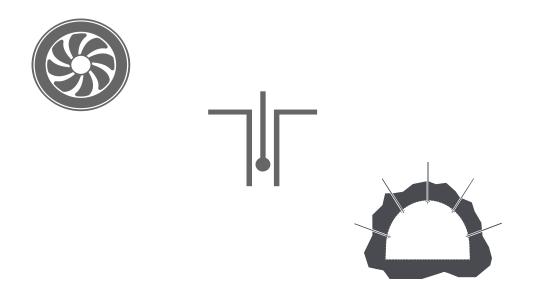

Simplified example

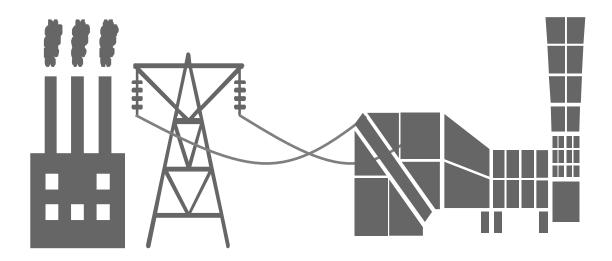
- VOD is an emerging technology
- Dynamic Simulations can help provide a higher resolution to the potential in power savings.
- Need to always think of operating costs and potential downtime when implementing VOD

Dynamic modelling provides an accurate approach to interactions and interferences between mining equipment.




Modeling feeds into mine ventilation designs as the equipment fleet is optimized.


Higher definition on target airflows.


Greater levels of confidence in ventilation infrastructure sizing.

Can be used to estimate at a high level of confidence the potential power savings from using VOD style systems.

srk consulting

Questions and Comment

